通常情况下,一名学者如果能够将一项数学工具运用到极致,并在此基础上做出创新,便足以配得上杰出这个词。
显然,他的工作更在杰出之上。
他擅长于选择一条全新的思路,为一个陈旧的方法注入新的内容,或者以此为养分,在此基础上创造一个前所未有的数学方法。
让我评价的话,如果继续完善这个数学方法,没准他真有希望最终解决这个世纪难题。
当然,我们也不得不承认,这其中的难度非常非常大!
】
要偏微分领域,对ns方程有过研究的学者中,“什么都会一点的tao”,大概可以算是其中的翘楚了。
在2014年的时候,有一位哈萨克籍数学家奥特尔巴耶夫(otelbayev)宣称证明了ns方程的存在性与光滑性,在国际数学界引起了不的争议。
因为这位学者可比次年宣称自己证明了黎曼猜想的伊诺克教授水平高得多,算是一名正儿八经的数学家,从预印本到期刊投稿的操作一气呵成,所以他并没有受到无情的冷遇。
然而,想要给这位学者审稿却并不容易。
解决庞家来猜想的佩雷尔曼虽然性格孤僻,但论文好歹用是英文写的。但这位奥特尔巴耶夫先生似乎不擅长英语,用的是俄语写作,而且篇幅长达九十页,直接劝退了一大批感兴趣的同校
只会粤语和英语的陶哲轩当然也看不懂俄语,不过这并不妨碍这位才的牛逼。
根据奥特尔巴耶夫教授的论文,陶哲轩首先仿照他的思路,构造了一个跟ns方程结构相似,但有所不同的方程。如果原证明的结论成立,那么毫无疑问,他构造的例子也一定会存在整体光滑解。
紧接着,更牛逼的事情发生了。
他通过设置了一个特殊的初始值,证明了该初始值对应的光滑解会在有限时间内会失去正则性。这就相当于找到了一个反例,直接跳过了证明过程,从逻辑上否定了这条思路的正确性。